The road to microservice for
Database as a Service (DBaaS)
via Istio

#IstioCon

Welcome to the IstioCon 2022

IstioCon 2022 is the inaugural community conference for the industry's most
popular service mesh. IstioCon is a community-led event, showcasing the
lessons learned from running Istio in production, hands-on experiences from
the Istio community, and featuring maintainers from across the Istio
ecosystem. The conference offers a mix of keynotes, technical talks,
lightning talks, workshops and roadmap sessions. Fun and games are also
included with two social hours to take the load off and mesh with the Istio
community, vendors, and maintainers!

#lstioCon ‘\

Background — Monolith to Microservices

Recently, the Database as a Service (DBaaS) saw a significant growth YoY. One of the key reasons
for the growth of DBaasS is the explosive growth of data that we have observed over the last year.
The pandemic created strong data growth (WFH, e-learning, etc.)

However, well designed DBaaS systems tend to adopt a stateless, loosely coupled architecture,
with efficient message passing to produce a scalable, stable and reliable service. In addition, one
major characteristic of DBaaS is to serve for multi-Tenants to reduce cost and provide highly
availability and scalability.

Successful multi-Tenant platforms require massive scalability, online patching/upgrading, the
ability to process high volumes of data ingestion.

To make the DBaaS become more cloud native,
there is a journey for us to migrate the legacy
monolithic systems into microservice
architecture. And as an excellent project of
service mesh, Istio become the first choice to
help to complete this process.

| St | O C O n Monolithic Architecture Microservice Architecture ‘ \

Background — Challenge for DBaaS

Kubernetes
Spring Cloud
Istio

® Multi-Tenant
support

® Auto-scale and
migration support

® CI/CD process
handling

® Observability
capability

4 #lstioCon

RESILIENCE & FAULT TOLERANCE
How to handle fault?

- slow or no response

- temporary faults

- overload

SERVICE DISCOVERY LOAD BALANCING

Where are the services? How to distribute requests
Which service to call? across multiple backends?

EDGE SERVICE & APl GATEWAY

How to
- hide private services?
- protect public services?

MONITORING

I What hardware resources are used?
CONFIGURATION MANAGEMENT . . How are my services performing?
Where is the configuration? Service A Service B
Are all workloads configuration
up to date? TRACING
Service C Service D Who is calling who?
< How much time does each
workload take?
:EV?PS ’ | SECURITY
low to continuously i
; - Kube Network Policy(L4),
2
integrate and deliver? Authorization Policy (L7)
LOGGING WORKLOAD MANAGEMENT CHAOS ENGINEERING TRAFFIC MANAGEMENT
How to How much confidence to put How to control routing?
Where are the logs? - deploy workload the system to production? - rate limiting

- canary & blue/green upgrades,

- scale workload
- upgrade workload
- restart failing workload

How to correlate logs
from different workloads?

5

Inside CouchDB

® Apache CouchDB is an

open-source document-

oriented NoSQL database,

implemented in Erlang.
CouchDB uses multiple
formats and protocols to
store, transfer, and process
its data. It uses JSON to
store data, JavaScript as
its query language using
MapReduce, and HTTP for

an API.

#IstioCon

[HTTP Client]

/[Erlang HTTP (CHTTPD) h

: i
Core Engine [Fabric]
§ | Rexi ,] [7 MEM3 |

Replicator ’
\

Full-text
Index

N
4

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/API

6

Inside CouchDB

@® B-tree storage and view request
O A powerful B-tree storage engine at
the heart of CouchDB
O Sorted data structure

To allow searches, insertions
and deletions
For all internal data, documents

and views

@® Incremental replication between
CouchDB nodes
O Synchronize data between any two
databases however you like and when
your like.

O Synchronize database servers within a
cluster or between data centers

#IstioCon

‘ v | viewrange mm—i

‘couchjs'

rows —JSON encoding

HTTP: {"total_rows":9,"offset":0,"rows":[...]}

Put_,,.--VQ ~~~~~~~ Replication

.:‘-.:Replication A
. y
O'Replication

O

Decompose DBaaS into microservices

[HTTP Client J

® Can be decomposed into

microservice thanks to
O BASE instead of ACID

i
O Document oriented storage %//ﬁ/ W ”////////////

model I e //w
O Distributed storage ﬁ 7 .. %
® Key Decomposed
Microservices
O Core Engine

%///,,Z”;/

Erlang HTTP (CHTTPD)

////////////ﬁ////%’///////é"%////

Core Engin

O View Engine Storage Engne
O Search Engine / \
O Replication Engine shard 1 Shard2
G@@D@@@@%
7 #lstioCon @Gﬁ Q ‘
5 o

Manage DBaaS Microservices via Istio

® From Gateway Only A
O Ingress gateway —f St e ——

O Egress gateway

® To Incrementally add > senicen > seices
more services to the
mesh
— i e e a8
Service A Service B

A4

#lstioCon AR

Manage DBaaS Microservices via Istio

@ Connections between services within Kubernetes Service are typically in
plaintext, while there are exceptions to this rule TLS is not enforced.

@® The objective is to ensure that all communication within Kubernetes services
use mutual TLS, in such a way as to address the difficulty for
deve[opers/operators to get this set up. o e

CNAME updated to point to domain for istio ingress gateway

*. nosqldb.cloud.acm.com © service A
: certificate terminated by istio

K8S-provided DNS domain for istio ingress gateway
mycluster-<hash>-001.us-south.contaienrs.domain.cloud
TLS O . mutual TLS I
: Istio
jrm = - ﬂ —-&-= ingress @ »() proxy
i : gateway -

|
client |r=-=-=" =

Manage DBaaS Microservices via Istio

* The missing fallback at Istio can be solved by using a framework (Resilience4))
» Istio traffic management and application resilience can co-exist

eror
Istio I
o___. st Ingress i | 5 res |

#
set ro le] Tault 1'

‘ s injection eavoy l Service Pod

o

10 #lstioCon

Practice on DBaaS Data Plane with Istio

® Challenge
O Add to the
networking |.08.d controle)

Scheduler Controller Manager API Server istiod

placed on o
microservices in call
chains

O Bring complex in e’
multi-Tenant
architectures
serving applications
for multiple users

Envoy

%
View
Engine

A
Core
Engine

7

Envoy

Replicatiol Search
Engine Engine

11 #lstioCon “

Practice on DBaaS Data Plane with Istio

® Observability

O Observe the
connections and
microservices in
Istio service mesh

O Identify request
routing, circuit
breakers, request
rates, latency using
the visualized
service mesh
topology

= kiali

QOverview

Graph

Applications

Services

Istio Config

Namespace: dbaas «

Display w

Apri4, 05:14:53 PM .. 06:14:53 PM

o

e
Q
* 8

n

A @D © anonymous

Versioned app graph ~

‘D Lastth ~ Every15s E

@@

Current Graph

u Outbound Total

HTTP (requests per second):

Total %Success %Error

¥ Hide

0.00 100.00 0.00

A

Practice on DBaaS Data Plane with Istio

///////

request O

_f /
=l =

avg QPS(reqg/sec) throughput(reg/min) timeout

sss

22222222222222222222

333333333333333333

22222222222222222222222222222222222

Practice on DBaaS Data Plane with Istio

Actor

ey
Gateway 2 /
igross Depioyment il ‘::‘“o Core Deployment
7, / / / / / 7/ mTLS
- mTLS
opc
(o F o]
Search Engine Bare Metal Servers
StatefulSet
.) Latency QPS/Per-Thread .)
connections | threads | duration(s))| S s ST e ey e D) avg QPS(req/sec) throughput(reg/min) | timeout
10 1 60 26.71 .38 58.41 323.84 16.04: 389.76 321.08 19257 0
100 1 60 316.52 27.25 733.01 273.66 44.56 726.03 258.72 15978 0
100 10 60 328.83 87.66 1356 31.13 11.47 78 269.09 16248 0
100 100 60 300.86 18.78 439.1 1.97 0.25 10 235.02 14148 0
1000 100 60 1250 124.52 1534 4.77 5.79 70 200.47 12068 11822

14 #lstioCon

L

ractice on DBaaS Data Plane with Istio

@ with injected Proxy Latency Avg(ms)

1600
1400
1200
] Latency I QPS/Per-Thread [))
| threads e | a9 timeout 2000
232,65 15.@‘ 280 231.61 13904
192.72 73.61 525 185.46| 1115_o| o 800
21.01 13.93 90 188.7 11354 102
1.94 0.29 10 223.88 13474) ﬁ 600
982 10.76 80 196.81 11848] 11810]
400
200
0 —
10°1 100%1 100*10 100*100 1000*100
mw/obypass mw/ bypass
@® without injected Proxy
ghput(req/min)
[Latency QPS/Per-Thread i i
| e | avg(ms) |s(dev(ms)| max(ms) | ap@ fimeout
323.84] 16.04] 389.76) 19257 o
273.66, 44.56 726.03 15978 o
31.13 11.47] 78 16248 o
1.97] 0.23| 1g| 14148 o
477, 5.79 70 12068 11822

15 #lstioCon

w/obypass mw/ bypass

Multi-Tenant Support for DBaaS via Istio

2 kinds of solution for Multi-Tenant support

= Namespace based solution
» Use Kubernetes native namespace resource for different tenants
= Use authorization policy to enhance tenant isolation

= Multi Cluster/Control Plane based solution

= Deploy a cluster or control plane for a tenant

= Cluster/Control plane scope isolation for each tenant

16 #lstioCon

Multi-Tenant Support for DBaaS via Istio

= Namespace based solution
= Pros:
= More cost-effective and multiple tenants can share within a k8s cluster
= Easier to implement and operation, and a native namespace per tenant
= Cons:
= Not strictly isolation among tenants
= Cluster scope resource for a tenant has impact on other tenants

= Cluster/Control Plane based solution
= Pros:
= Better isolation and security for a tenant
= Better user experience than namespace solution
= Cons:

= Expensive due to extra resource usage, such extra cluster or control plane
= Lower resource utilization

= Heavy burden for operation

17 #lstioCon ‘\

Multi-Tenant Support for DBaaS via Istio

Namespace based solution is the choice.
However, some actions should be taken to
improve user experience, isolation and security.

= Admin privileges handling
® Cluster admin - super admin
= Tenant admin
= Improve user experience
= Extra operators are deployed to make it easier
for tenant to interact with cluster/control
plane scope resources.
= Improve isolation
= Both IAM and Istio authorization policy are
used to enhance isolation based on user
account id, tenant id, token and namespace.
= Improve security
= Both IAM and Istio authentication policy are

used to enhance security for microservice DB
Instances.

18 #lstioCon

apiVersion: security.istio.io/vlbetal
kind: AuthorizationPolicy
metadata
name: viewengine
namespace: tenant_1
spec
selector
matchLabels
app: coreengine
version: vl
action: ALLOW
rules
from
source
principals
"cluster.local/ns/tenant_1/sa/coreengine"
source
namespaces "tenant_1"
to
operation
methods “GET, POST, PUT, DELETE"
when
key: request.auth.claims[iss]

values "https://nosqldb.acm.com"

Multi-Tenant Support for DBaaS via Istio

Tenant Kubernetes Clusters C

Tenant Kubernetes Clusters B

Tenant Kubernetes Clusters A

Identity Authorization
with tenant id&token
for Tenant-E

Namespace Tenant-ID-E for Tenant-E

Micoservice DB
Instances

Y

Identity Authorization
with user account id

uthorization
Operator

User Access with
user account id-1

X

user-1
Tenant-E

User Access with
user account id-2

X

user-2

User Access with
user account id-3

—_—
———

Tenant-F { i
user-3

_.[Authorization
Policy For Tenant-

E

pN

user-1 and user-2 o

user-3 °

Request for
Tenant-ID-E

Balance
Gateway A

Authorization
Policy For Tenant-

)

Identity Authorization
with tenant id&token
for Tenant-F

Egress

user-1 and user-2

Q
user-3 ; 0

Request for
Tenant-ID-F

Micoservice DB
Instances

4

19 #lstioCon

Namespace Tenant-1D-F for Tenant-F

CI/CD Process for DBaaS via Istio

Tools for CI/CD:

® Manifest Generation
O Helm
O Draft
O Kustomize
O istioctl

® CI/CD:
O Spinnaker
O Jenkins X
O FluxCD
O ArgoCD

O Concourse
@® Operators

O operator-framework
@® Observability

O Prometheus

O Grafana

O Kiali

20 #lstioCon

—r e
r “ p “ o
K % . N\ . .
¥ v, commit \ commit pull !
t 7 Wave Flux Pt
\\-/ / ; Y
v \\ S e

1 deploy img:0.1.*

traffic 90%

deploy img:0.2.* J’

l Deployment

.........

Canary |

traffic 10%

https://helm.sh/
https://draft.sh/
https://kustomize.io/
https://www.spinnaker.io/
https://jenkins-x.io/
https://fluxcd.io/
https://argoproj.github.io/argo-cd/
https://sdk.operatorframework.io/

Thank you!

#IstioCon

mailto:jiangphcn@apache.org
mailto:zhlsunshine878@gmail.com

