
THE ENTERPRISE SERVICE MESH COMPANY

Meet the workshop instructors
ISTIO 0 TO 60

Eitan Suez
Peter Jausovec

About this workshop
ISTIO 0 TO 60

Get up and running quickly with Istio
Prerequisites

Basic understanding of Kubernetes, Docker, and Linux command line.

Logistics
ISTIO 0 TO 60

Duration: 2.5 hours
15 minute break half-way through the training

Communication support through slack channel
https://istio.slack.com/

channel #istiocon-workshop-tetrate

https://istio.slack.com/

Learn by doing
APPROACH

Lab-driven training
Minimize the use of slides
We request your active participation

Please ask questions

Schedule Lab environments
Configure access to your lab environment

What problems does Istio address?
A high-level introduction and overview of Istio

Install Istio
Get your cluster installed and configured with Istio

Sidecar injection and the app under test
Deploy a simple application to the mesh, and expose it with Ingress

Observability, Security, Traffic shifting
Three labs that cover the essential cross-cutting concerns that Istio
addresses

Summary

Workshop labs
https://tetratelabs.github.io/istio-0to60/

https://tetratelabs.github.io/istio-0to60/

Environments
IN A NUTSHELL

BYOK (Bring Your Own Kubernetes) - if possible
Fallback:

We have a few Kubernetes clusters provisioned in GCP that we can give you
access to, "while supplies last."

Let us know via slack if you need a K8S cluster and we'll assign you a cluster.

The first lab contains instructions for accessing your cluster on GCP.

We will begin with a lab to get your environment setup

LAB
Setup your environment

https://tetratelabs.github.io/istio-0to60/environment/

https://tetratelabs.github.io/istio-0to60/environment/

Meet Istio

PROBLEM

IT shift to a modern distributed architecture
has left enterprises unable to monitor,

connect, manage, and secure their services in
a consistent way.

Problem
MODERN DISTRIBUTED ARCHITECTURE

Container based services
Deployed into dynamic environments
Composed via the network

Problem
MONITOR

Understand what’s actually happening in your deployment
through basic tools:

Metrics

Logs

Tracing

Problem
CONNECT

Get network out of the application
Service discovery

Resiliency

Load balancing

Retries, outlier detection, circuit breaking, timeouts, etc.

Client side

Problem
MANAGE

Control which requests are allowed, and how and where
they flow

Fine-grained traffic control

Policy on requests

L7, not L4! Route by headers, destination or source, etc.

Authentication, rate limiting, arbitrary policy based on L7 metadata

Problem
SECURE

Elevate security out of the network
Service-to-service authentication

Workload identity (L7)

Service Mesh
WHAT IS SERVICE MESH

Service mesh moves these facets out of the application for
better division of labor and...

Consistency across fleets

Centralized control

Ease of change
Update configurations without redeployment

What is Istio?
Istio is a platform to monitor, secure,
connect and manage services
consistently

LAB
Installing Istio

https://tetratelabs.github.io/istio-0to60/install/

https://tetratelabs.github.io/istio-0to60/install/

Istio Architecture

Story as old as time:
Service A meets service B...

Deploy a proxy (Envoy) beside your application ("sidecar deployment")

First logical component is Galley, which is responsible for validating incoming config.

Pilot distributes the validated networking configuration to each Envoy

...and Pilot also distributes policy

Citadel assigns SPIFFE identities to enable secure communication

Control plane - Istiod

Now, let's track that call

Envoy intercepts it

Uses the configuration to pick a new destination

Verifies the destination's identity

The receiving Envoy checks the sender's identity

The receiving Envoy checks policy

Envoy hands the request to B

B answers

Istiod - Control plane Manager, handling

LAB
The application

https://tetratelabs.github.io/istio-0to60/the-app/

https://tetratelabs.github.io/istio-0to60/the-app/

Ingress

What can we say about Ingress?
1. Ingress Pod runs in istio-system namespace
2. Configured logically in Kubernetes with the Gateway

custom resource
3. Routing configured separately with VirtualService

custom resource

LAB
Ingress gateway

https://tetratelabs.github.io/istio-0to60/ingress/

https://tetratelabs.github.io/istio-0to60/ingress/

Observability

Metrics to Prometheus

Traces to Zipkin

Whatever you want via the Access Log Service

LAB
Observability

https://tetratelabs.github.io/istio-0to60/dashboards/

https://tetratelabs.github.io/istio-0to60/dashboards/

Secure your environment

Identifying workloads
AUTHENTICATION (AUTHN)

Authn - all about the principal
Each workload is assigned a unique identity that it uses to
communicate with other workloads

Kubernetes = Istio uses service accounts

SPIFFE overview
SECURE PRODUCTION IDENTITY FRAMEWORK FOR EVERYONE

X.509 certificate (from SA) + SPIFFE spec = IDENTITY
SPIFFE is a spec that describes:

A naming scheme for workload identities

spiffe://cluster.local/ns/default/sa/my-sa

How to encode those names into a X.509 certificate

How a client Validates an X.509 certificate to authenticate the SPIFFE
identity inside of it

Mutual TLS (mTLS)

Permissive

Strict

Peer authentication
SERVICE-TO-SERVICE COMMUNICATION

Controls communication between services
PERMISSIVE (default)

STRICT

Mesh, namespace, workload, and port level

Peer authentication
NAMESPACE LEVEL

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: foo
spec:
 mtls:
 mode: STRICT

Peer authentication
WORKLOAD LEVEL

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: foo
spec:
 selector:
 matchLabels:
 app: prod
 mtls:
 mode: STRICT

Peer authentication
PORT LEVEL

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: foo
spec:
 mtls:
 mode: STRICT
 portLevelMtls:

5000:
 mode: DISABLE

What about users?

Request authentication
USER AUTHENTICATION

Uses JWT tokens

Mesh/namespace/workload
scope

Also at ingress level:
forwardOriginalToken

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: httpbin
 namespace: default
spec:
 selector:
 matchLabels:
 app: httpbin
 jwtRules:
 - issuer: "issuer-foo"
 jwksUri: "someuri"

JWT authentication filter
Authn enforced by
the filter

Doesn't deny
requests without
JWT tokens
(allowMissing)

Used together with
AuthorizationPolicy

name: envoy.filters.http.jwt_authn
typedConfig:
 providers:
 origins-0:
 issuer: testing@secure.istio.io
 localJwks:
 inlineString: '...'
 payloadInMetadata: testing@secure.istio.io
 rules:
 - match:
 prefix: "/"
 requires:
 requiresAny:
 requirements:
 - providerName: origins-0
 - allowMissing: {}

JWT authentication filter
WHEN ARE THE REQUESTS APPROVED/DENIED

DENIED

Mismatching issuers

Token expired

Invalid audience (if provided)

Invalid signature

APPROVED

Valid JWT

No JWT
Use AuthorizationPolicy

Authorization (authz)
CAN A PRINCIPAL PERFORM AN ACTION?

Can user A send a GET request to path /hello on service B?
Authn without authz (and vice-versa) is useless
Control authenticated principals with AuthorizationPolicy

Authorization policy
Make use of identities extracted from:

PeerAuthentication -> principals (service/peer)

RequestAuthentication --> requestPrincipals (users)

Example

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: require-jwt
 namespace: default
spec:
 selector:
 matchLabels:
 app: prod
 rules:
 - from:
 - source:
 requestPrincipals: ["*"]

Authorization policy
RULES "FROM" FIELD

source identities

namespaces

principals

IP blocks and
remote IP blocks

rules:
- from:
 - source:
 principals: ["cluster.local/ns/default/sa/workload"]
 - source:
 namespaces: ["prod"]
 - source:
 requestPrincipals: ["tetrate.io/peterj"]

Authorization policy
RULES "TO" FIELD

hosts

ports

methods

paths

rules:
- from:
 - ...
 to:
 - operation:
 methods: ["DELETE"]
 paths: ["/logs*"]
 - operation:
 methods: ["GET"]
 paths: ["/data"]
 - operation:
 hosts: ["request.host"]
 ports: ["3000", "5000"]

Authorization policy
"WHEN" FIELD (CONDITIONS)

Keys and values (or
notValues)

Request attributes:
request.headers

source.ip, remote.ip

source.namespace |

principal,

...

rules:
- from:
 to:
 when:
 - key: request.auth.claims[iss]
 values: ["https://accounts.google.com"]
 - key: request.headers[my-header]
 values: ["some-value"]
 - key: source.namespace
 value: ["foo"]

...

Authorization policy
"ACTION" FIELD

CUSTOM

DENY

ALLOW

AUDIT

spec:
 action: DENY
 rules:
 - from:
 to:
 when:

...

Recap
Services → PeerAuthentication
Users → RequestAuthentication
Access control rules → AuthorizationPolicy

From, To, When

LAB
Security

https://tetratelabs.github.io/istio-0to60/security/

https://tetratelabs.github.io/istio-0to60/security/

Istio Traffic Management
CUSTOM RESOURCES (1/2)

Virtual service
Configure routing rules for each service

Destination rule
Configure how to reach the target endpoint, applied after routing decision has been made

How to route the request?

DestinationRule
POLICIES APPLIED TO TRAFFIC FOR A SPECIFIC SERVICE

Subsets = represent different service versions
Traffic policies:

Load balancer settings (ROUND_ROBIN, LEAST_CONN, RANDOM,
PASSTHROUGH)

Connection pool settings (TCP and HTTP)

Outlier detection

TLS

Connection pool settings
CONTROL THE VOLUME OF CONNECTIONS

Applied to TCP and/or HTTP connections
Timeouts
Max connections/requests
Max retries

Outlier detection
HOW TO EJECT UNHEALTHY HOSTS

When to eject unhealthy hosts?
e.g. consecutive5xxErrors, consecutiveGatewayErrors

How long to eject them for?
baseEjectionTime

How many hosts can be ejected?
maxEjectionPercent

When to enable ejection?
minHealthyPercent

VirtualService
Routing rules (TCP, HTTP, non-terminated TLS/HTTPS
traffic)

Match & route

Redirect

Rewrite

Mirroring

Cors, Timeouts, retries, and fault injection

Header manipulation

Match on headers
hosts:
 - svcB.example.cluster.local
http:
- match:
 - headers:
 user-agent:
 regex: ".*Firefox.*"
 route:
 - destination:
 host: svcB.example.cluster.local
 subset: v1
- route:
 - destination:
 host: svcB.example.cluster.local
 subset: v2

AND semantics
hosts:
 - svcB.example.cluster.local
http:
- match:
 - headers:
 x-debug:
 exact: dev
 uri:
 prefix: /api/debug
 route:
 - destination:
 host: svcB.example.cluster.local
 subset: v1
- route:
 - destination:
 host: svcB.example.cluster.local
 subset: v2

OR semantics
hosts:
 - svcB.example.cluster.local
http:
- match:
 - headers:
 x-debug:
 exact: dev
 - uri:
 prefix: /api/debug
 route:
 - destination:
 host: svcB.example.cluster.local
 subset: v1
- route:
 - destination:
 host: svcB.example.cluster.local
 subset: v2

Timeout, retries
hosts:
 - svcB.example.cluster.local
http:
- route:
 - destination:
 host: svcB.example.cluster.local
 subset: v1
 weight: 30
 timeout: 5s
 - destination:
 host: svcB.example.cluster.local
 subset: v2
 weight: 70
 timeout: 0.5s
 retries:
 attempts: 3
 perTryTimeout: 2s
 retryOn: connect-failure

LAB
Traffic shifting

https://tetratelabs.github.io/istio-0to60/traffic-shifting/

https://tetratelabs.github.io/istio-0to60/traffic-shifting/

