
#IstioCon

How Istio helped us
investigate failures on our

microservices
Shota Shirayama

Rakuten, Inc.

#IstioCon

The goal of this session

I believe that people, who are considering Service Mesh, think that
Istio looks good by giving an example of the usefulness of Istio in
our system.

#IstioCon

Background

● Microservices increase system complexity in general.
● It wasn't easy to improve logging or architecture for the

development team because of their focus on service
development.

● SRE decided to deploy Istio to combat the system complexity.

#IstioCon

Today’s Story

Istio brought us the network's observability and testability, which
led us to solve the complex system failure.

#IstioCon

Simple diagram of service architecture

GKE

Main Service
(GraphQL)

Service A

Service B

:

Istio (Control Plane) Istio-Prox
y

#IstioCon

One day, the node went down

● Main Service pods were redundant.
● The node on which Main Service pod was running went down.
● Pod and Node recovered automatically after a while.

Node Node Node

Main
Service

Main
ServiceService A

Automatic repair by k8s/GKE

#IstioCon

But, one endpoint on Main Service didn’t
work
● One endpoint on Main Service (which calls ServiceA internally)

didn’t respond.
● ServiceA pod was restarted manually. Then, it started working

properly.

Main
Service

Service A

Service B

:

x o
o

#IstioCon

Main
Service

The additional clue for the root cause from
Istio-Proxy’s log
● Fact 1: The node on which Main Service pod was running went down.
● Fact 2: One Main Service endpoint stopped working until manual

ServiceA pod restart.
● (No useful application logs to reveal what was happening...)
● Fact3: Main Service waited for responses from ServiceA.

Istio-Proxy access log
• StatusCode : 503
• ResponseFlag : Upstream Connection Termination
• Duration : long (untill ServiceA pod restart)

Service A Istio-Prox
y

#IstioCon

Why did Main Service wait for responses from
ServiceA ?
Hypothesis:

1. Node down caused that ServiceA waited for Main Service’s
response forever.

2. The Queue was full, and ServiceA waited to enqueue the data.
3. ServiceA didn’t return responses to Main Service

Main Service Service A

queue

APIAPI

API daemon

enqueue

dequeue1
2

3

#IstioCon

Main Service

Reproduce the failure in a test
environment
● Difficult to reproduce the same situation...
● Istio’s “Fault injection" makes it easy to reproduce the same

situation in a test environment.

Service A

queue

APIAPI

API daemon

enqueue

dequeue

Inject delay with Istio’s “Fault Injection” feature
Istio-Prox

y

#IstioCon

Recap:
Istio helped us investigate failure on our
microservicesIstio improves observability
→ Istio-Proxy’s log helped us find the hypothesis of the cause of
failure.

Istio improves testability
→ Istio’s feature (fault injection) made it easy to reproduce the
failure.

#IstioCon

Thank you!

